Self-Aggregation in Scaled Principal Component
Space

Chris H.Q. Ding?, Xiaofeng He®’, Hongyuan Zha’, Horst D. Simon®

“ NERSC Division, Lawrence Berkeley National Laboratory
University of California, Berkeley, CA 94720
" Department of Computer Science and Engineering
Pennsylvania State University, University Park, PA 16802

October 5, 2001

Abstract

Automatic grouping of voluminous data into meaningful structures is a chal-
lenging task frequently encountered in broad areas of science, engineering and
information processing. These data clustering tasks are frequently performed in
Fuclidean space or a subspace chosen from principal component analysis (PCA).
Here we describe a space obtained by a nonlinear scaling of PCA in which data
objects self-aggregate automatically into clusters. Projection into this space gives
sharp distinctions among clusters. Gene expression profiles of cancer tissue sub-
types, Web hyperlink structure and Internet newsgroups are analyzed to illustrate
interesting properties of the space.



Introduction

Scientific discoveries are often made in the appropriate spaces. For example, many
physical processes are analyzed in Fourier space rather than in Euclidean space. In re-
cent decades, principal component analysis (PCA) [1] has being increasingly widely used:
the low-dimensional space spanned by the principal components is effective in revealing
structures of the observed high-dimensional data. This is particularly useful for data
clustering, organizing observed data into groups or clusters, to discover meaningful dif-
ferences and commonalities among data objects [2, 3]. For example, in micro-array gene
expression profiling, tissue samples can be automatically grouped together according to
their phenotypes [4, 5] (see Figure 1). Such groupings automatically generate meaning-
ful structures, that are particularly useful for many knowledge discovery process [6], in

climate patterns|7], image segmentation[8, 9], etc.

PCA is a coordinate rotation such that the principal components span the dimen-
sions of largest variance. The linear transformation preserves local properties and global
topologies, and can be efficiently computed [10]. However, it is not effective in revealing
nonlinear structures and several nonlinear mappings [12, 11] have been recently devel-
oped. Here, we report that a nonlinear scaling of PCA leads to a space in which data

objects self-aggregate, and therefore is most suitable for data clustering.
Scaled principal components

Associations between data objects are usually based on a similarity metric, such
as the correlation, covariance or quantities inversely proportional to the distance met-
ric. The scaled principal component approach starts with a nonlinear (non-uniform)
scaling of the similarity matrix S. The scaling factor D is a diagonal matrix and
each diagonal element is the sum of the corresponding row (d; = 3=, 5;;). Noting that
S = DY2(D~Y2SD=Y%)DY? we apply PCA or spectral decomposition on the scaled
matrix D=125D~1/% instead on S directly, leading to

S = D23 whuf)DYE = DY ML D (1)
k k
Here we call f, = D~'/?uy, the scaled principal components (fi,u; are n-vectors); they

are obtained by solving the eigenvalue system

D~Y28 D=2 = \u. (2)

Self-aggregation
The K-dimensional space spanned by the first K scaled principal components (SPCA

space) has an interesting self-aggregation property enforced by intra-cluster association

(connectivity). First, when no overlap exists between different clusters, the K scaled
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principal components get the same maximum eigenvalue: Ay = --- = Ag = 1. This is due
to the nonlinear scaling and is independent of the size of each cluster. As a consequence,
objects within a cluster will coincide with each other in SPCA space, resulting in K
distinguishable points for K clusters [13].

Second, when overlaps between different clusters exist, objects within the same clus-
ter become much more closer in SPCA space than they are in Euclidean space. This is
because the coordinates (elements of any scaled principal component f) can be equiva-
lently obtained by [14, 18] minimizing the objective function

2
min Z”(ﬁ — i) SZH. (3)
iy Lidif?

Thus adjacent objects have close values, such that (f; — f;)? is close to zero for non-

zero S;;. The self-aggregation is evident in Figure 1 showing gene expression profiles of

lymphoma cancer (from Alizadeh et al. [4]).
Besides the self-aggregation, the nonlinearity in SPCA can alter the topology in a

useful way to reveal structures (as shown in Figure 2) which are otherwise difficult to
detect using standard PCA. Thus the SPCA space is a more useful space to explore the
structures.

Iterative-aggregation

The self-aggregation process can be repeated to obtain sharper clusters (see Figure
1(C)). This is done by truncating the expansion in Eq.(1) at K terms, and setting
M ==X =1. Wehave S~ DYK £\ 0D = DFFTD, where F' = (fr, -, fx).
Asin PCA, DFF'D is the low-dimensional projection that contains the essential cluster
structure. Combining this structure with the original similarity matrix, we obtain a new
similarity matrix containing sharpened cluster information: S@ = (1 —a)DFFTD 4 asS,

where a = 0.5. Applying SPCA on S® leads to further aggregation (see Figure 1).
The structure of DFFID is determined by F/FT. When data contains K well sep-

arated clusters, F'F'T has a diagonal block structure[13]. When clusters are not well
separated but can be meaningfully distinguished, F'F'T has approximate block-diagonal
form[19]. Thus one can interpret F'F'T as the probability that two objects 7, j belong to
the same cluster: p;; = (FF7T);/(FFT);(FFT);;. To reduce noise in the above iterative
aggregation, we set (F'F'T);; = 0if p;; < 8 where 0 < 8 < 1 and we chose # = 0.8. In
general, the final results are insensitive to «, 5 [22] and the method is stable. The above
iterative aggregation process repeatedly projects data into SPCA space and the self-
aggregation makes clusters well separated and their principal eigenvalues approaching 1
(see insert in Fig.1C).

After self-aggregation in SPCA, the cluster structure is usually very evident. One

can use the traditional approaches such as K-means and EM to get precise cluster



structures. Alternatively, one can examine the projection matrix FFT and use the

probability interpretation to obtain cluster structures.

The hyperlinked network of the World Wide Web (specified in a hyperlink adjacency
matrix) can be usefully analyzed in SPCA space. First, fragmented networks (isolated
segments) [23] appear as distinct points in SPCA space and are easily identified (Fig.3).
Second, a large segment is split into sparsely connected sub-segments. Several segments

are shown in Fig.4. All discovered segments are meaningful structures [24].
Mutual Dependence

In many scientific research and information processing tasks, we look for inter-
dependence between different aspects (attributes) of the same data objects. In gene
expression profiles, certain genes express strongly when they are from tissues of a cer-
tain phenotype, but express mildly when they are from other phenotypes[4]. Thus it
is meaningful to consider gene-gene correlations as characterized by their expressions
across all tissue samples. This is different from tissue-tissue relationship considered

above and shown in Figure 1.

In text processing, such as news articles, the content of an article is determined by the
word occurrences, while the meaning of words can be inferred through their occurrences
across different news articles. This kind of association between a data object (tissues,
news articles) and its attributes (expressions of different genes, word occurrences) is
represented by the asymmetric data matrix. Here we restrict our consideration to the
cases where all entries of data matrix P are non-negative, and therefore can be viewed as
the probability of association between column objects (as news articles or tissue samples)
and row objects (words or genes). This kind of data is sometimes called a contingency
table.

SPCA applies to these inter-dependence problems as well. We introduce nonlinear
scaling factors, diagonal matrices D, (each element is the sum of a row) and D. (each
element is the sum of a column), and write P = DY?(D7Y2PD7Y2)DY2. Applying
PCA on P = D7'Y2PDIY? we obtain

P =D2(3 wAvi)DY? = D, 3 fihg] D.. (4)
k k

Scaled principal components f, = D='/?uy, g = D-'/?v, have the same self-aggregation
and related properties because they can be viewed [25] as simultaneous solutions to
Eq.(2). Again, as a low-dimensional projection, we obtain projection matrices F'F'T,
GG, FGT [26]. The block structure of F'F'T gives the clusters on row objects (words)
while the block structure of GG7 simultaneously gives the clusters on column objects
(news articles). Furthermore, F'GT gives the correspondence between words and docu-

ments. Results of an analysis of newsgroups on the internet is shown in Fig.5.
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The relationship between row- and column-type objects is sometimes analyzed using
a statistical technique called correspondence analysis [27, 28], which emphasizes a ge-
ometric interpretation. SPCA re-derives correspondence analysis [29] from the general

principles of PCA and also bring along the above useful tools for analysis.

The key to understanding SPCA is the nonlinear scaling factor D. Columns and
rows of the similarity matrix are scaled inversely proportional to their weights such that
all K principal components get the same maximum eigenvalue of one [13, 19]. This
happens independent of cluster sizes. For example, as illustrated in Fig.3, one cluster
has 2181 webpages and another cluster has 2, but both of their corresponding principal

eigenvalues are one. This “equalization” of importance has two desirable consequences.

1. In automatic data analysis, outliers often skew the picture and should be detected
and eliminated prior to analysis. In SPCA space, outliers appear as independent
clusters, since they are far away from other objects. Thus they can be easily
detected.

2. SPCA is effective for unbalanced clusters (number of objects in each cluster vary
substantially), which are usually difficult for many other clustering methods. With-
out the nonlinear scaling, direct PCA on S will be dominated by the large clusters

and no self-aggregation will occur.

In self-aggregation, data objects move towards each other guided by connectivity.
This differs from hill climbing, where data objects move towards to direction of higher
density [30], which is difficult to estimate in high dimensions and is sensitive to parameter
choices. Both of these differ further from the self-organizing map [31], where the feature

vectors move around to form a feature map while data objects remain stationary.

The scaled PCA has a connection[14] to spectral graph partitioning, which uses the
second eigenvector of the Laplace matrix to partition a graph into components (clusters)
[15, 16, 17, 32, 9, 33]. Using several eigenvectors for partitioning have also been studied
[17, 34, 35, 36, 9]. SPCA reformulates the problem as the dimensionality reduction
of PCA and points out the subtle difference between principal components f and the
eigenvectors u. Self-aggregation then becomes clear following the perturbation analysis
outlined in [13, 19, 21].

Given the wide use of PCA and the diverse applications illustrated here, we anticipate
that more challenging problems will be solved and interesting new structures will be

discovered in the scaled PCA space.
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Figure 1: Gene expression profiles of cancerous and normal tissues samples from Alizadeh

et al.

[4] in original Euclidean space (A), in SPCA space (B), and in SPCA space

after one iteration (C). Cluster structures become clearer due to self-aggregation. The
insert in (C) shows the eigenvalues of the 1st and 2nd SPCA. Three cancerous and three
normal subtypes are shown (with the number of samples in each subtype in parentheses).
Expression levels on the 100 most informative genes define the Euclidean space; these

genes are selected out of the original 4025 genes based on the F-statistic.

Pearson

correlation is used and similarity S;; = exp(Cy;/(C)), where (C') = 0.099 is the average
correlation. (Please view this figure in color.)
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aggregate into much thinner rings.
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form a graph of 17 isolated segments (connected components) as shown in SPCA space
(the number of webpages in each segment is indicated). Shown is the 2D-view chosen

by PCA in the 17-dim SPCA space.
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Figure 4: Connectivity of the 2181-, 27-, and 17-webpage segments. The 2181-webpage
segment is further split into several sparsely connected sub-segments. Each discovered
(sub)segment corresponds to a community [24].
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Figure 5: Word aggregation in SPCA space while articles from five internet newsgroups
are simultaneously clustered. 100 news articles are randomly chosen from each news-
group (listed in upper right corner with corresponding color). Shown are the top 15 most
frequently occurring words from each discovered cluster. (Several words in motorcycles
are brand names, and several words in baseball are players’ names.) The insert shows
the projection matrix GG7 on clustering news articles, which indicates some overlap be-
tween computer graphics and space science. The accuracy of clustering is 86%. (Please
view this figure in color.)
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